Self-consistent-field calculations using Chebyshev-filtered subspace iteration

نویسندگان

  • Yunkai Zhou
  • Yousef Saad
  • Murilo L. Tiago
  • James R. Chelikowsky
چکیده

The power of density functional theory is often limited by the high computational demand in solving an eigenvalue problem at each self-consistent-field (SCF) iteration. The method presented in this paper replaces the explicit eigenvalue calculations by an approximation of the wanted invariant subspace, obtained with the help of well-selected Chebyshev polynomial filters. In this approach, only the initial SCF iteration requires solving an eigenvalue problem, in order to provide a good initial subspace. In the remaining SCF iterations, no iterative eigensolvers are involved. Instead, Chebyshev polynomials are used to refine the subspace. The subspace iteration at each step is easily five to ten times faster than solving a corresponding eigenproblem by the most efficient eigen-algorithms. Moreover, the subspace iteration reaches self-consistency within roughly the same number of steps as an eigensolver-based approach. This results in a significantly faster SCF iteration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self - consistent - field calculations using Chebyshev - filtered subspace iteration q

The power of density functional theory is often limited by the high computational demand in solving an eigenvalue problem at each self-consistent-field (SCF) iteration. The method presented in this paper replaces the explicit eigenvalue calculations by an approximation of the wanted invariant subspace, obtained with the help of well-selected Chebyshev polynomial filters. In this approach, only ...

متن کامل

Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration.

Solving the Kohn-Sham eigenvalue problem constitutes the most computationally expensive part in self-consistent density functional theory (DFT) calculations. In a previous paper, we have proposed a nonlinear Chebyshev-filtered subspace iteration method, which avoids computing explicit eigenvectors except at the first self-consistent-field (SCF) iteration. The method may be viewed as an approach...

متن کامل

Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations.

The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A cent...

متن کامل

Chebyshev-filtered subspace iteration method free of sparse diagonalization for DFT calculations

The Kohn-Sham equation in first-principles density functional theory (DFT) calculations is a nonlinear eigenvalue problem. Solving the nonlinear eigenproblem is usually the most expensive part in DFT calculations. Sparse iterative diagonalization methods that compute explicit eigenvectors can quickly become prohibitive for large scale problems. The Chebyshevfiltered subspace iteration (CheFSI) ...

متن کامل

Algorithms for the electronic and vibrational properties of nanocrystals.

Solving the electronic structure problem for nanoscale systems remains a computationally challenging problem. The numerous degrees of freedom, both electronic and nuclear, make the problem impossible to solve without some effective approximations. Here we illustrate some advances in algorithm developments to solve the Kohn-Sham eigenvalue problem, i.e. we solve the electronic structure problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2006